Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Conserv Physiol ; 10(1): coac070, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36540067

RESUMO

Understanding the factors that contribute to fish impairment and survival from angling events is essential to guide best angling practices for catch-and-release (C&R) recreational fisheries. Complex interactions often exist between angler behaviour, environmental conditions, and fish characteristics that ultimately determine biological outcomes for fish. Yet, few studies focus on identifying biologically relevant thresholds. We therefore examined the effects of water temperature, air exposure and fish size on reflex impairment and mortality in brook trout Salvelinus fontinalis exposed to experimental and simulated angling stressors (n = 337). Using conditional inference trees, we identified interactions among these factors as well as threshold values within them that determine brook trout reflex impairment as an indicator of whole animal stress. Specifically, longer air exposure times (>30 sec) and warmer temperatures (>19.5°C) had a synergistic effect leading to higher reflex impairment scores. Further, larger fish (>328 mm) were more sensitive to air exposure durations >10 sec. Of the reflex impairment measures, loss of equilibrium and time to regain equilibrium were strongly and moderately associated with brook trout mortality (18-24 h monitoring), although mortality rates were generally low (6%). These findings support previous research that has established strong links between these reflex impairment measures and fish health outcomes in other species. They also highlight the important interactions among air exposure duration, water temperature and fish size that determine impairment in brook trout, providing specific thresholds to guide best angling practices for C&R fisheries. This approach may be widely applicable to generate similar thresholds that can be encouraged by regulators and adopted by anglers for other common C&R fishes.

2.
Mol Ecol ; 31(1): 134-160, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34614262

RESUMO

Incorporating host-pathogen(s)-environment axes into management and conservation planning is critical to preserving species in a warming climate. However, the role pathogens play in host stress resilience remains largely unexplored in wild animal populations. We experimentally characterized how independent and cumulative stressors (fisheries handling, high water temperature) and natural infections affected the health and longevity of released wild adult sockeye salmon (Oncorhynchus nerka) in British Columbia, Canada. Returning adults were collected before and after entering the Fraser River, yielding marine- and river-collected groups, respectively (N = 185). Fish were exposed to a mild (seine) or severe (gill net) fishery treatment at collection, and then held in flow-through freshwater tanks for up to four weeks at historical (14°C) or projected migration temperatures (18°C). Using weekly nonlethal gill biopsies and high-throughput qPCR, we quantified loads of up to 46 pathogens with host stress and immune gene expression. Marine-collected fish had less severe infections than river-collected fish, a short migration distance (100 km, 5-7 days) that produced profound infection differences. At 14°C, river-collected fish survived 1-2 weeks less than marine-collected fish. All fish held at 18°C died within 4 weeks unless they experienced minimal handling. Gene expression correlated with infections in river-collected fish, while marine-collected fish were more stressor-responsive. Cumulative stressors were detrimental regardless of infections or collection location, probably due to extreme physiological disturbance. Because river-derived infections correlated with single stressor responses, river entry probably decreases stressor resilience of adult salmon by altering both physiology and pathogen burdens, which redirect host responses toward disease resistance.


Assuntos
Pesqueiros , Salmão , Migração Animal , Animais , Colúmbia Britânica , Interação Gene-Ambiente , Salmão/genética
4.
Conserv Physiol ; 4(1): cov072, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27293751

RESUMO

Migration is a widespread phenomenon among many taxa. This complex behaviour enables animals to exploit many temporally productive and spatially discrete habitats to accrue various fitness benefits (e.g. growth, reproduction, predator avoidance). Human activities and global environmental change represent potential threats to migrating animals (from individuals to species), and research is underway to understand mechanisms that control migration and how migration responds to modern challenges. Focusing on behavioural and physiological aspects of migration can help to provide better understanding, management and conservation of migratory populations. Here, we highlight different physiological, behavioural and biomechanical aspects of animal migration that will help us to understand how migratory animals interact with current and future anthropogenic threats. We are in the early stages of a changing planet, and our understanding of how physiology is linked to the persistence of migratory animals is still developing; therefore, we regard the following questions as being central to the conservation physiology of animal migrations. Will climate change influence the energetic costs of migration? Will shifting temperatures change the annual clocks of migrating animals? Will anthropogenic influences have an effect on orientation during migration? Will increased anthropogenic alteration of migration stopover sites/migration corridors affect the stress physiology of migrating animals? Can physiological knowledge be used to identify strategies for facilitating the movement of animals? Our synthesis reveals that given the inherent challenges of migration, additional stressors derived from altered environments (e.g. climate change, physical habitat alteration, light pollution) or interaction with human infrastructure (e.g. wind or hydrokinetic turbines, dams) or activities (e.g. fisheries) could lead to long-term changes to migratory phenotypes. However, uncertainty remains because of the complexity of biological systems, the inherently dynamic nature of the environment and the scale at which many migrations occur and associated threats operate, necessitating improved integration of physiological approaches to the conservation of migratory animals.

5.
Physiol Biochem Zool ; 89(1): 10-25, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27082521

RESUMO

Land use changes within watersheds can have large effects on stream ecosystems, but the mechanistic basis of those effects remains poorly understood. While changes to population size presumably reflect underlying variation in organismal health and condition, such individual-level metrics are rarely evaluated in the context of ecosystem disturbance. To address this deficiency, we combined physiological sampling with geographic information systems to quantify the effects of land use on physiological indicators of health in largemouth bass. More specifically, we first quantified blood metrics relating to nutrition, oxidative stress, and the glucocorticoid stress response from largemouth bass residing in eight watersheds. We then used Akaike's information criterion to define relationships between these blood metrics and land cover, including forests, agricultural areas, urban areas, and wetlands. The proportion of forest cover in a watershed was the best predictor of blood metrics representing recent feeding and resistance to oxidative stress, whereas the proportion of wetlands was the best predictor of glucocorticoid function; however, further investigation is needed, as the explanatory power of the models was relatively low. Patterns in energy reserves were not influenced by any land use practices. Interestingly, anthropogenic land use categories, such as urban and agricultural areas, were not the best predictor for any blood metrics. Together, our results indicate that fish health is most related to natural features of a landscape rather than anthropogenic land uses. Furthermore, these findings suggest that physiological methods could supplement traditional population and community assessments to develop a more comprehensive understanding of ecosystem interactions and improve stream management.


Assuntos
Bass/fisiologia , Conservação dos Recursos Naturais , Ecossistema , Rios , Agricultura , Animais , Agricultura Florestal , Sistemas de Informação Geográfica , Modelos Teóricos , Ontário , Urbanização
6.
Sci Total Environ ; 547: 87-94, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26780133

RESUMO

Anthropogenic alterations to terrestrial habitat (e.g., urbanization, deforestation, agriculture) can have a variety of negative effects on watercourses that flow through disturbed landscapes. Currently, the relationship between stream habitat quality and fish condition remains poorly understood. The use of physiological metrics such as glucocorticoids (GCs) provides a useful tool for quantifying these effects by relating the health of resident fishes to stream quality. To date, however, most studies that measure GC levels tend to focus on a single, large-bodied species, rather than evaluating how GCs may be influenced differently between species in a community. In this study, we measured cortisol, the glucocorticoid found in fishes, from fish tissues to quantify effects of habitat degradation on the glucocorticoid function of five species of juvenile and small-bodied stream fish which differ ecologically and phylogenetically. Largemouth bass Micropterus salmoides, brown bullhead Ameiurus nebulosus, white sucker Catostomus commersonii, pumpkinseed Lepomis gibbosus, and logperch Percina caprodes were sampled from a reference and a degraded stream. Upon capture, fish were either euthanized immediately, to quantify baseline stress parameters, or following a standardized stressor, to quantify GC responsiveness. As a result of stream degradation largemouth bass possessed altered baseline GC concentrations and brown bullhead and logperch had altered GC responses to a stressor. White sucker and pumpkinseed did not demonstrate any alteration in baseline or post-stress GC concentrations. Together, our results show that different species residing in identical habitats can demonstrate a variety of responses to environmental stress, highlighting the variation in physiological ability to cope under poor environmental conditions, as well as the difficulty of predicting GC dynamics in wild animals. Understanding the relationships between GC function, habitat quality, and population-level processes will increase the ability of researchers and managers to predict how fish communities and aquatic ecosystems will be shaped by anthropogenic environmental change.


Assuntos
Monitoramento Ambiental , Peixes/metabolismo , Glucocorticoides/metabolismo , Animais , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
7.
Integr Comp Biol ; 55(4): 618-30, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25931612

RESUMO

Humans have dramatically altered landscapes as a result of urban and agricultural development, which has led to decreases in the quality and quantity of habitats for animals. This is particularly the case for freshwater fish that reside in fluvial systems, given that changes to adjacent lands have direct impacts on the structure and function of watersheds. Because choices of habitat have physiological consequences for organisms, animals that occupy sub-optimal habitats may experience increased expenditure of energy or homeostatic overload that can cause negative outcomes for individuals and populations. With the imperiled and threatened status of many freshwater fish, there is a critical need to define relationships between land use, quality of the habitat, and physiological performance for resident fish as an aid to restoration and management. Here, we synthesize existing literature to relate variation in land use at the scale of watersheds to the physiological status of resident fish. This examination revealed that landscape-level disturbances can influence a host of physiological properties of resident fishes, ranging from cellular and genomic levels to the hormonal and whole-animal levels. More importantly, these physiological responses have been integrated into traditional field-based monitoring protocols to provide a mechanistic understanding of how organisms interact with their environment, and to enhance restoration. We also generated a conceptual model that provides a basis for relating landscape-level changes to physiological responses in fish. We conclude that physiological sampling of resident fish has the potential to assess the effects of landscape-scale disturbances on freshwater fish and to enhance restoration and conservation.


Assuntos
Conservação dos Recursos Naturais/métodos , Peixes/fisiologia , Estresse Fisiológico , Animais , Recuperação e Remediação Ambiental , Água Doce
8.
Water Res ; 56: 190-202, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24681235

RESUMO

Increase in fine sediments in freshwater resulting from anthropogenic development is a potential stressor for fish and thus may cause population declines. Though a large body of literature exists on the topic, there have been few attempts to synthesize this information in a quantitative manner. Through meta-analysis we investigated the effects of sediment in lotic environments on resident ichthyofauna using ecologically-relevant endpoints for tolerant (e.g., northern pike Esox lucius) and intolerant (e.g., brook trout Salvelinus fontinalis) species. Further, the efficiency of sediment-control devices was explored to inform mitigation measures. An increase in suspended and deposited sediments was demonstrated to have a negative effect on all parameters and tolerances tested (feeding behavior [feeding rate, reaction distance to food item]; spawning success [survival of fry to eyed stage, fry emergence]; species richness; P < 0.001) except fish abundance (P = 0.058). Heterogeneity between studies was a factor in all analyses. Although there were insufficient studies to conduct meta-analysis on sediment-control devices, weighted percent efficiency estimates revealed that properly installed sediment-control fences tended to have a higher percent efficiency (73-80%) than sediment traps and basins (40-52%). These results highlight the negative impact that increases in suspended and deposited sediments can have on resident fishes from the individual to the population, and the need for more transparent and thorough statistical reporting. The analysis also identifies a clear need for rigorous experimental studies contrasting different sediment-control devices and strategies given that little such work has been published. That alone is remarkable given that sediment-control devices are often a requirement of regulators for riparian development activities, yet the evidence to support the effectiveness of the primary mitigative strategies is weak.


Assuntos
Peixes/fisiologia , Poluentes da Água , Animais , Água Doce , Sedimentos Geológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...